
AD-A270 612

DTIC
EL LFr'rr- '-
OcT 13 1993

Service without Servers .

Chris Maeda Brian N. Bershad
August 1993

CMU-CS-93-144

School of Computer Science

Carnegie Mellon University

- - :"' I J Pittsburgh, PA 15213

To appear in the Fourth Workshop on Workstation Operating Systems. October 14-15, 1993.

Abstract

We propose a new style of operating system architecture appropriate for microkernel-based operating sys-

tems: services are implemented as a combination of shared libraries and dedicated server processes. Shared
libraries implement performance critical portions of each system service, while dedicated servers implement

the parts of each service that do not require high performance or that are difficult to implement in an appli-

cation. Our initial experiments show that this approach to operating system structure can yield performance

that is comparable to monolithic kernel systems while retaining all the modularity advantages of microkernel
technology. Since services reside in libraries, an application is free to use the library that is most appropri-
ate. This approach can even yield better performance than monolithic kernel systems by allowing the shared

libraries to be closely coupled with the applications, thereby exploiting application-specific knowledge in
policy decisions.
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1. Introduction

In the past few years, there has been dramatic growth in the number and quality of microkernels. As
of this writing, several commercial operating systems based on microkernel technology exist or are under
development [Phelan et al. 93, Hildebrand 92, Rozier et al. 92, Zajcew et al. 93]. Current practice is to
structure a microkernel operating system as one or more server processes that collectively implement the
operating system services [Golub et al. 90, Julin et al. 91, Rozier et al. 92, Khalidi & Nelson 93, Hildebrand
921. This approach implicitly models the operating system as a distributed system where services reside in
"remote" server processes that happen to be on the same machine. However, the communication overhead
incurred when contacting these servers can result in poor performance. In latency-sensitive applications like
those requiring high-speed networking, the extra communication costs for applications to communicate with
"remote" server processes is unacceptable because the latency for an interprocess RPC is comparable to the
network round-trip latency [Brustoloni & Bershad 93, Draves et al. 91].

In this position paper, we propose a new style of operating system architecture appropriate for microkernel-
based operating systems: services are implemented as a combination of shared libraries and dedicated server
processes. Shared libraries implement performance critical portions of each system service, while dedicated
servers implement the parts of each service that do not require high performance or that are difficult to
implement in an application. Dedicated servers might be used, for example, to manage shared state that
must persist across process lifetimes or to implement high-level abstractions that are difficult or impossible
to provide in a library.

Our initial experiments show that this approach to operating system structure can yield performance that
is comparable to monolithic kernel systems while retaining all the modularity advantages that led industry
to adopt microkernel technology in the first place. Since services reside in libraries, an application is free to
use the library that is most appropriate. This approach can even yield better performance than monolithic
kernel systems by allowing the shared libraries to be closely coupled with the applications, thereby exploiting
application-specific knowledge in policy decisions.

In the next section, we present our approach to structuring system services and discuss the role of the
kernel, servers, and application-level libraries. In Section 3 we describe how we applied our approach to the
implementation of a networking service (a more complete description can be found in [Maeda & Bershad
93]). In Section 4 we suggest how our approach may be applied to a filesystem service, and discuss the
potential benefits of doing so. We summarize in Section 5.

2. Service structure

Operating systems generally perform two functions: they allocate machine resources, such as physical mem-
ory, processors, and I/O capacity, and they provide high-level abstractions like filesystems, processes, and
I/O channels. In our model, the kernel is simply a global resource scheduler. Services external to the kernel
provide abstractions and a means for applications to acquire and use resources. The implementation of a ser-
vice is split into global and application-specific parts that reside in servers and shared libraries, respectively.
By splitting the implementation in this way, applications can make more effective use of their resources
without forfeiting security or generality.

Services acquire resources from the kernel and manage them using a global server or application-specific
libraries. Global servers can be used to manage shared abstractions or large blocks of resources delegated
by the kernel, such as a disk partition. The application specific libraries provide information to the kernel
about special resource requirements and manage resources dedicated to the application, such as a single
network connection. The kernel in such a system has the following requirements:

* a global resource scheduling policy. L
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"* adequate means to enforce resource scheduling decisions (protection).

"* a way to inform services about resource scheduling decisions.

"• a way for services to proviie hints to the kernel to influence resource scheduling decisions.

There are two performance benefits to our model. The first is that the shared library can exploit
application-specific knowledge in managing resources allocated by the kernel. The second benefit of our
model is that performance-critical parts of the service can be implemented in the shared library, thereby
avoiding the extra communication overhead associated with a remote server process.

Some examples

The operating systems community has been "dabbling" with the resource manager model for some time
now. Early personal computer operating systems [Redell et al. 80. Moon 91] ran all system services and
applications in a single address space, which enabled applications to be tightly coupled with the operating
system. However, these systems provided no protection against rogue or buggy applications that crash the
system or use the hardware to attack other systems.

Other work spans file systems [Rees et al. 86, Bershad & Pinkerton 88], scheduling [Anderson et al. 921,
communication [Bershad et al. 91], and user-level memory management [McNamee & Armstrong 90, Harty &
Cheriton 92, Sechrest & Park 91, Krueger et al. 93]. The work in extensible filesystems permits applications
to extend the semantics of files on a per-file basis. However, this work still leaves all resource scheduling
decisions to the operating system. With scheduler activations, the kernel globally allocates processors to
applications and informs them when their processor allocation changes. The applications provide hints
about when changes in processor allocation would be useful and use the processor allocation information
to implement a high-level threads library. URPC is an IPC library that uses shared memory to implement
low-latency IPC. The library relies on the kernel's scheduler to perform processor allocation in response to
outstanding messages. Implementations of user-level memory management permit applications to determine
the page replacement policy for their virtual memory. The kernel allocates physical memory to applications
while the applications determine virtual to physical mappings. (In contrast, the Mach External Pager [Young
89] simply enables applications to implement backing store for parts of their virtual memory.)

3. A networking service

In this section, we describe an implementation of networking protocols that runs as a library-level service,
and that relies on a central server for a few critical operations. In our networking service, a library im-
plements a complete TCP/IP and UDP/IP stack that communicates directly with an in-kernel Ethernet
device driver. Incoming packets are demultiplexed to application address spaces using the packet filter, a
protocol-independent packet demultiplexing facility [Mogul et al. 87, Yuhara et al. 94]. The library takes
raw Ethernet packets from the kernel and does all protocol stack processing before handing the data to the
application. Similarly, outgoing data is formatted into TCP/IP or UDP/IP messages before being sent to
the in-kernel Ethernet driver. The proper level of distrust is maintained because the packet filter ensures
that applications only see the packets that they are supposed to see. A similar mechanism could be applied
to outgoing packets to ensure that applications only send packets that they are allowed to send.

The library is linked with applications and cooperates with a server process to manage host-level state
such as routing tables and to support the BSD Sockets API (see Figure 1). The Sockets API is difficult to
emulate in an application-level library because network sessions are represented as file descriptors which have
complex semantics due to system calls such as fork and select. Two techniques, session state migration and
co-management of abstractions, are instrumental in emulating the complex semantics of Unix file descriptors.
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Figure 1: Schematic of a networking service implementation where critical-path functionality is implemented
by libraries in the application's address space. A server process manages shared databases, handles connec-
tion set up, and implements high-level abstractions.

Session state migration is used to set up sessions and to enable sharing. The session state for a TCP
connection, for example, consists of the connection state variables ([Postel 81]), and any data buffered by the
protocol stack. The server process handles the TCP connection setup protocol and migrates the established
TCP session to the application during an accept call. The protocol stack in the application and the in-
kernel device driver handle all subsequent data transfer; no interaction with the server is required. When
an application does a fork system call, the parent and child processes of the fork must each have a file
descriptor that refers to the same network session. Before the fork, the network session state is migrated
back to the server process so that it may be shared.

Co-management of abstractions is used to emulate the select system call. The operating system knows
about file descriptors that are managed by applications and exports an interface by which the applications
can inform the operating system when the status of a file descriptor changes. When the library learns that
a file descriptor has changed status, it informs the operating system which forces any blocked select calls
to return.

The global resource managed by the kernel is network capacity. When an application acquires a packet
filter port, it acquires a portion of network capacity on which it can apply a protocol. In the current
implementation, this resource allocation aspect is implicit; we assume that Ethernet bandwidth is infinite.
However, the kernel could explicitly allocate network resources if applications specified a quality of service
(QOS) [Kurose 93] at session establishment time, and if the kernel enforced QOS by penalizing applications
that exceed their limits.

The performance of our system is comparable to native in-kernel implementations. Between two DEG-
station 5000/200's running in single-user mode on a private Ethernet, the round-trip latency for 1 byte UDP
messages is 1.50 ms in our system and 1.45 ms for the Mach 2.5 integrated kernel. Round-trip latency for 1
byte TCP messages is 1.40 ms in Mach 2.5 and 1.75 ms in our system. For TCP throughput, the Mach 2.5
kernel achieves 1070 kilobytes/second while our system achieves 995 kilobytes/second. Our library lags a
few percent behind 2.5 because we copy incoming packets (including protocol headers) one extra time in our
system. In contrast, both implementations substantially outperform the Mach 3.0 Unix Server, where the
round-trip latency for 1 byte messages is 3.61 ms for UDP, 3.64 ms for TCP, and where TCP throughput is
740 kilobytes/second.

Once we have a user-level implementation, we can achieve further performance gains by more tightly
coupling tL application.with the protocol implementation. For example, we can change the API to return a
buffer from a socket call, rather than filling one in, eliminating two data copies during rourd-trip operf'ions.
UDP round-trip latency drops to 1.46 ms and TCP latency drops to 1.72 ms. TCP throughput only improves
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by 1% (to 1002 kilobytes/second) because the copies eliminated by this change are not the critical path for
high throughput.

4. A proposed filesystemm service

At first glance, it is not clear how application-specific libraries can provide any performance improvement for
filesystems. Since many applications share the same file system, the filesystem metadata should be managed
by a single server to which the kernel has delegated responsibility for the disk partition. Furthermore, disks
are slow enough compared to the cost of an interprocess RPC that there is little additional overhead involved
with accessing data through a dedicated file server process [Bershad 92]. However, given current trends in
CPU, memory system, and disk performance, applications will require a fast path to a disk block cache
which rarely misses in order to perform well. By "fast," we mean that there isn't time to even copy the
data out of the buffer cache into the client's address space [Ousterhout 90], let alone fetch it from disk.
Consequently, the data must effectively be cached in the client's address space before it is accessed.

One way, then, to apply our resource management methodology to a file system service is to have a server
that manages the disk, along with a shared library that implements a distributed buffer cache. Instead of
having a buffer cache that resides in the address space of a single server, the buffer cache pages can be
mapped into the address space of the application that most likely to use them. This approach means that
an application can access data in the buffer cache with a simple procedure call and without having to copy
the data out of the cache.

While this approach uses the same mechanism as memory-mapped files, the policy is completely different.
Memory-mapped files use a reactive policy where file data is not brought in from disk and mapped into the
application's virtual address space until it is referenced, forcing the application to wait. Future applications,
such as those in databases, multimedia, and scientific computing, will require a more proactive policy where
data is present in physical memory before it is first referenced.

Filesystem performance can benefit from application-specific information in two ways. The application
can provide hints about future usage to the filesystem server to help it schedule disk traffic [Patterson et al.
93]. This will result in more effective prefetching policies and lower buffer cache miss rates. An effective
prefetching policy will also move virtual memory remapping operations off the critical path since disk blocks
will already be mapped into the application address space when they are needed. In addition, the application
can tell the kernel about how it will use the buffer cache so that the kernel can make informed decisions
about physical memory allocation [Stonebraker 811.

5. Sumnary

One way for microkernel operating systems to match the performance of integrated kernel systems is to
implement services as a combination of application-level shared libraries and dedicated server processes. We
have implemented a networking service in this "distributed" fashion that matches the performance of an
integrated kernel and we have demonstrated that tighter coupling between the application and the library
can result in even better performance. We expect that other operating system services can be designed this
way; library-based implementations of scheduling, IPC, and memory management have been reported in the
literature, and we have described a way that this approach could be applied to file systems.

An open problem is how to design an infrastructure that enables "distributed" implementations of oper-
ating system services. The most important part of this infrastructure is a kernel that informs applications
about its resource scheduling decisions and that can use hints about application requirements in its resource
scheduling -decisions.
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